π  in Different Bases

If you compute π using a Mac, does that make it an apple pi?


Much of the effort to determine digits of π has been focused on the decimal expansion of the value.  However, it is interesting to see how π appears in different number bases. The values below are the first 100 digits.  Keep in mind that it would take different numbers of digits to express the same precision.  As an example, the 100 digits in binary are approximately equivalent to 30 digits in the decimal expansion.


Binarybase = 2,digits:   {0,1}
11.00100 10000 11111 10110 10101 00010 00100 00101 10100 01100 00100 01101 00110 00100 11000 11001 10001 01000 10111 00000
 
Ternarybase = 3,digits:   {0,1,2}
10.01021 10122 22010 21100 21111 10221 22222 01112 01212 12120 01211 00100 10122 20222 12012 01211 12101 21011 20022 01202
 
Quaternarybase = 4,digits:   {0,1,2,3}
  3.02100 33312 22202 02011 22030 02031 03010 30121 20220 23200 03130 01303 10102 21000 21032 00202 02212 13303 01310 00020
 
Quintarybase = 5,digits:   {0,1,2,3,4}
  3.03232 21430 33432 41124 12240 41402 31421 11430 20310 02200 34441 32211 01040 33213 44004 32444 01441 04233 41330 11323
 
Sextarybase = 6,digits:   {0,1,2,3,4,5}
  3.05033 00514 15124 10523 44140 53125 32110 23012 14442 00411 52525 53314 20333 13113 55351 31233 45533 41001 51543 44401
 
Heptarybase = 7,digits:   {0,1,2,3,4,5,6}
  3.06636 51432 03613 41102 63402 24465 22266 43520 65024 01554 43215 42643 10251 61154 56522 00026 22436 10330 14432 33631
 
Octalbase = 8,digits:   {0,1,2,3,4,5,6,7}
  3.11037 55242 10264 30215 14230 63050 56006 70163 21122 01116 02105 14763 07200 20273 72461 66116 33104 50512 02074 61615
 
Decimalbase = 10,digits:   {0,1,2,3,4,5,6,7,8,9}
  3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
 
Duodecimalbase = 12,digits:   {0,1,2,3,4,5,6,7,8,9,A,B}
  3.18480 9493B 91866 4573A 6211B B1515 51A05 72929 0A780 9A492 74214 0A60A 55256 A0661 A0375 3A3AA 54805 64688 0181A 36830
 
Hexadecimalbase = 16,digits:   {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
  3.243F6 A8885 A308D 31319 8A2E0 37073 44A40 93822 299F3 1D008 2EFA9 8EC4E 6C894 52821 E638D 01377 BE546 6CF34 E90C6 CC0AC